



## Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method

The objective of this research paper is to develop a hydrophilic interaction liquid chromatographic method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. Two Design of Experiments (DoE) methodologies are implemented for method optimization and robustness testing.

The DoE method applied for optimization is Box Behnken design. The factors (independent variables) examined in this stage are:  $X_1$  = acetonitrile content in the mobile phase (%),  $X_2$  = ammonium acetate concentration in the aqueous phase (mmol/L) and  $X_3$  = pH of the aqueous phase. All the factors are continuous. The responses (dependent variables) examined are:  $k_3$  = retention factor of Impurity 2 and  $a_2$  = selectivity factor of critical peak pair.

The DoE method applied for robustness testing is fractional factorial design. The factors examined in this stage are: A = acetonitrile content in the mobile phase (%), B = buffer concentration in aqueous phase (mM), C = pH of the aqueous phase, D = mobile phase flow rate (mL/min) and E = column temperature (°C). All the factors are continuous and the responses examined are the same as those of the first stage.

*Isalos version used: 2.0.6*

Scientific article: <https://www.sciencedirect.com/science/article/abs/pii/S0731708516302084>

## Optimization stage

### Step 1: Box Behnken Design

In the first tab named “Action” define the factors in the column headers and fill each column with the low and high levels of the corresponding factors. This tab can be renamed “Box Behnken”. Afterwards, apply the Box Behnken method: *DOE → Response Surface → Box Behnken*

|             | Col1        | Col2 (I) | Col3 (I) | Col4 (D) |
|-------------|-------------|----------|----------|----------|
| User Header | User Row ID | X1       | X2       | X3       |
| 1           |             | 90       | 40       | 4        |
| 2           |             | 94       | 80       | 5.5      |

DoE Box Behnken

Number of Center Points per Block: 3

Number of Replicates: 1

Number of Blocks: 1

Random Standard order

Excluded Columns

Included Columns

- Col2 -- X1
- Col3 -- X2
- Col4 -- X3

>>

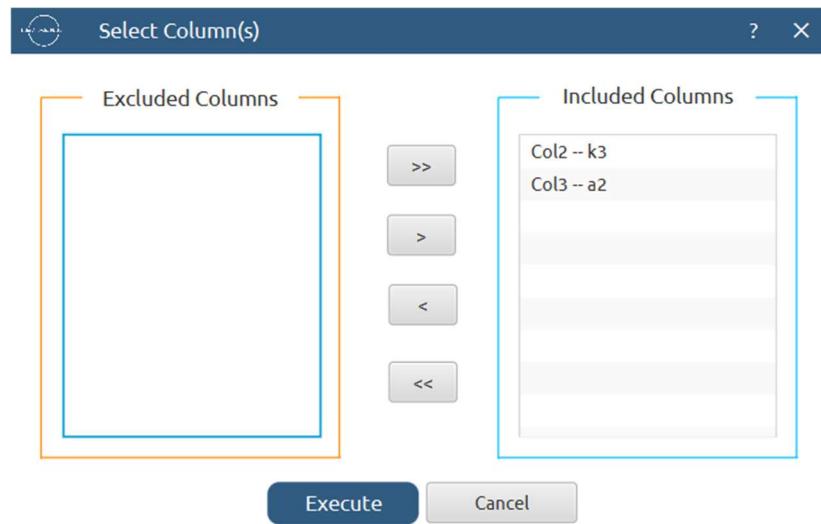
>

<

<<

Execute

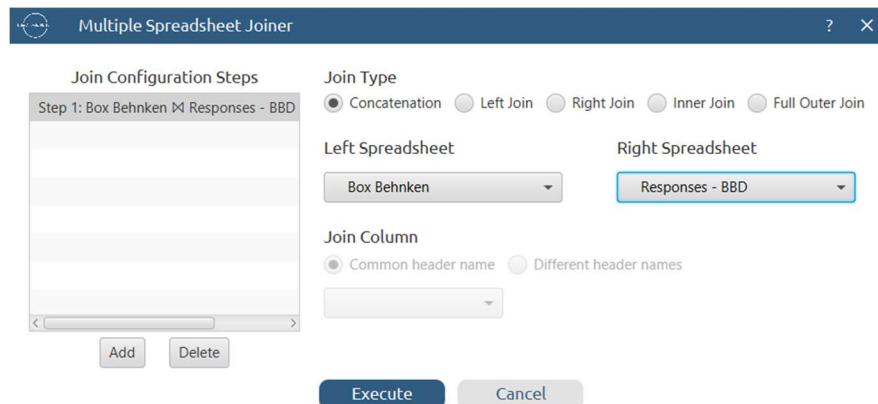
Cancel

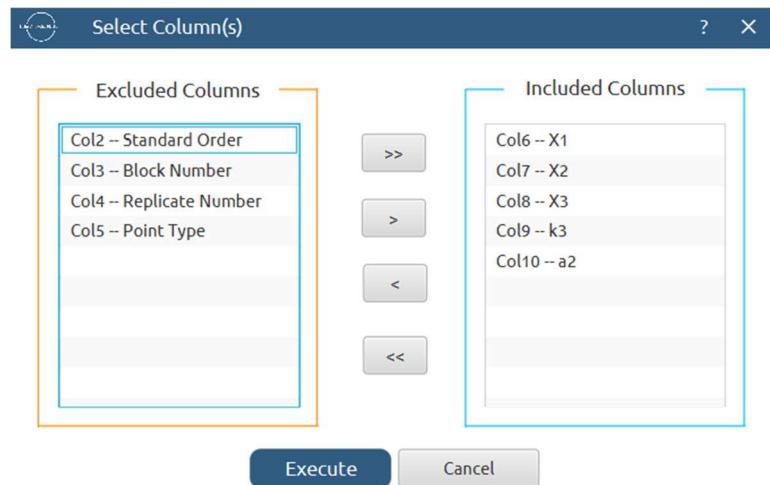

Results (right spreadsheet):

|             | Col1        | Col2 (I)       | Col3 (S)     | Col4 (S)         | Col5 (S)     | Col6 (D) | Col7 (D) | Col8 (D) |
|-------------|-------------|----------------|--------------|------------------|--------------|----------|----------|----------|
| User Header | User Row ID | Standard Order | Block Number | Replicate Number | Point Type   | X1       | X2       | X3       |
| 1           |             | 1              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 40.0     | 4.75     |
| 2           |             | 2              | Block: 1     | Replicate: 1     | Design Point | 94.0     | 40.0     | 4.75     |
| 3           |             | 3              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 80.0     | 4.75     |
| 4           |             | 4              | Block: 1     | Replicate: 1     | Design Point | 94.0     | 80.0     | 4.75     |
| 5           |             | 5              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 60.0     | 4.0      |
| 6           |             | 6              | Block: 1     | Replicate: 1     | Design Point | 94.0     | 60.0     | 4.0      |
| 7           |             | 7              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 60.0     | 5.5      |
| 8           |             | 8              | Block: 1     | Replicate: 1     | Design Point | 94.0     | 60.0     | 5.5      |
| 9           |             | 9              | Block: 1     | Replicate: 1     | Design Point | 92.0     | 40.0     | 4.0      |
| 10          |             | 10             | Block: 1     | Replicate: 1     | Design Point | 92.0     | 80.0     | 4.0      |
| 11          |             | 11             | Block: 1     | Replicate: 1     | Design Point | 92.0     | 40.0     | 5.5      |
| 12          |             | 12             | Block: 1     | Replicate: 1     | Design Point | 92.0     | 80.0     | 5.5      |
| 13          |             | 13             | Block: 1     | ----             | Center Point | 92.0     | 60.0     | 4.75     |
| 14          |             | 14             | Block: 1     | ----             | Center Point | 92.0     | 60.0     | 4.75     |
| 15          |             | 15             | Block: 1     | ----             | Center Point | 92.0     | 60.0     | 4.75     |

## Step 2: Definition of response variables

Create a new tab named “Responses - BBD” and define the responses in the column headers. Fill each column with the values of the corresponding responses that were observed and make sure the values follow the order of the experiments as given by the Box Behnken method. Then, select all columns to be transferred to the right spreadsheet: [Data Transformation → Data Manipulation → Select Column\(s\)](#)


|             | Col1        | Col2 (D) | Col3 (D) |
|-------------|-------------|----------|----------|
| User Header | User Row ID | k3       | a2       |
| 1           |             | 3.53     | 1.5      |
| 2           |             | 23.65    | 1.65     |
| 3           |             | 3.47     | 1.38     |
| 4           |             | 20.19    | 1.5      |
| 5           |             | 1.34     | 1.26     |
| 6           |             | 8.78     | 1.36     |
| 7           |             | 4.24     | 1.43     |
| 8           |             | 28.96    | 1.64     |
| 9           |             | 3.63     | 1.33     |
| 10          |             | 2.9      | 1.23     |
| 11          |             | 9.92     | 1.72     |
| 12          |             | 10.53    | 1.61     |
| 13          |             | 7.34     | 1.47     |
| 14          |             | 7.08     | 1.46     |
| 15          |             | 7.86     | 1.51     |



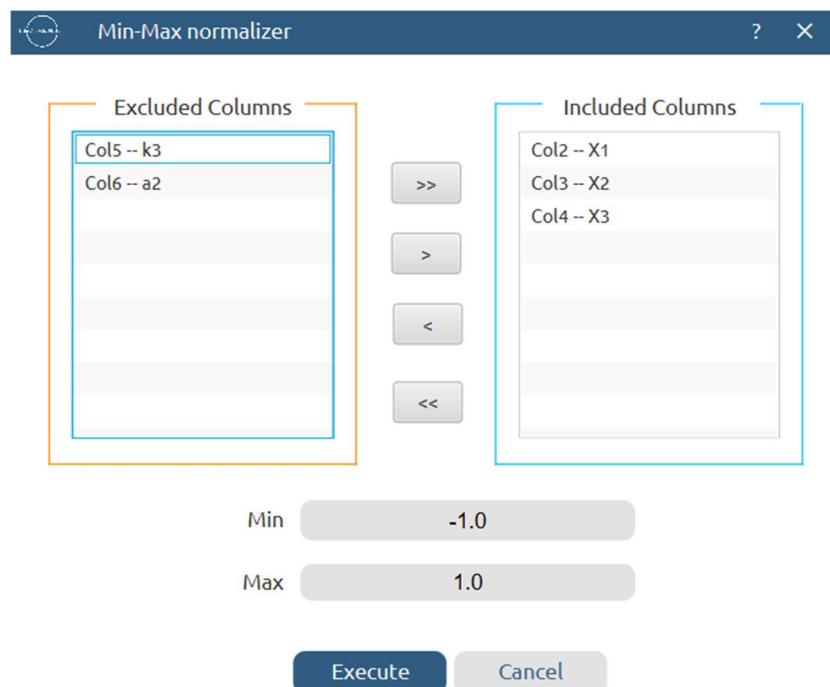
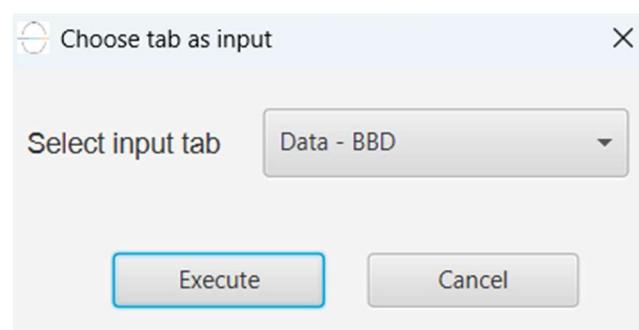

## Step 3: Data isolation

Create a new tab named “Data - BBD” and import the results from the “Box Behnken” and “Responses - BBD” spreadsheets by right clicking on the left spreadsheet. Then, select only the factors and responses columns to be transferred to the right spreadsheet: Data Transformation → Data Manipulation → Select Column(s)

|             | Col1        | Col2 | Col3 | Col4 | Col5 | Col6 |
|-------------|-------------|------|------|------|------|------|
| User Header | User Row ID |      |      |      |      |      |
| 1           |             |      |      |      |      |      |
| 2           |             |      |      |      |      |      |
| 3           |             |      |      |      |      |      |
| 4           |             |      |      |      |      |      |
| 5           |             |      |      |      |      |      |
| 6           |             |      |      |      |      |      |
| 7           |             |      |      |      |      |      |
| 8           |             |      |      |      |      |      |
| 9           |             |      |      |      |      |      |
| 10          |             |      |      |      |      |      |







Results:

|             | Col1        | Col2 (D) | Col3 (D) | Col4 (D) | Col5 (D) | Col6 (D) |
|-------------|-------------|----------|----------|----------|----------|----------|
| User Header | User Row ID | X1       | X2       | X3       | k3       | a2       |
| 1           |             | 90.0     | 40.0     | 4.75     | 3.53     | 1.5      |
| 2           |             | 94.0     | 40.0     | 4.75     | 23.65    | 1.65     |
| 3           |             | 90.0     | 80.0     | 4.75     | 3.47     | 1.38     |
| 4           |             | 94.0     | 80.0     | 4.75     | 20.19    | 1.5      |
| 5           |             | 90.0     | 60.0     | 4.0      | 1.34     | 1.26     |
| 6           |             | 94.0     | 60.0     | 4.0      | 8.78     | 1.36     |
| 7           |             | 90.0     | 60.0     | 5.5      | 4.24     | 1.43     |
| 8           |             | 94.0     | 60.0     | 5.5      | 28.96    | 1.64     |
| 9           |             | 92.0     | 40.0     | 4.0      | 3.63     | 1.33     |
| 10          |             | 92.0     | 80.0     | 4.0      | 2.9      | 1.23     |
| 11          |             | 92.0     | 40.0     | 5.5      | 9.92     | 1.72     |
| 12          |             | 92.0     | 80.0     | 5.5      | 10.53    | 1.61     |
| 13          |             | 92.0     | 60.0     | 4.75     | 7.34     | 1.47     |
| 14          |             | 92.0     | 60.0     | 4.75     | 7.08     | 1.46     |
| 15          |             | 92.0     | 60.0     | 4.75     | 7.86     | 1.51     |

## Step 4: Normalization

Create a new tab named “Normalized data - BBD” and import the results from the “Data - BBD” spreadsheet. Afterwards, normalize the factor columns to take values in the range [-1, 1]: Data Transformation → Normalizers → Min-Max

|             | Col1        | Col2 | Col3 | Col4 | Col5 | Col6 |
|-------------|-------------|------|------|------|------|------|
| User Header | User Row ID |      |      |      |      |      |
| 1           |             |      |      |      |      |      |
| 2           |             |      |      |      |      |      |
| 3           |             |      |      |      |      |      |
| 4           |             |      |      |      |      |      |
| 5           |             |      |      |      |      |      |
| 6           |             |      |      |      |      |      |
| 7           |             |      |      |      |      |      |
| 8           |             |      |      |      |      |      |
| 9           |             |      |      |      |      |      |
| 10          |             |      |      |      |      |      |



Results:

|             | Col1        | Col2 (D) | Col3 (D) | Col4 (D) | Col5 (D) | Col6 (D) |
|-------------|-------------|----------|----------|----------|----------|----------|
| User Header | User Row ID | X1       | X2       | X3       | k3       | a2       |
| 1           |             | -1.0     | -1.0     | 0.0      | 3.53     | 1.5      |
| 2           |             | 1.0      | -1.0     | 0.0      | 23.65    | 1.65     |
| 3           |             | -1.0     | 1.0      | 0.0      | 3.47     | 1.38     |
| 4           |             | 1.0      | 1.0      | 0.0      | 20.19    | 1.5      |
| 5           |             | -1.0     | 0.0      | -1.0     | 1.34     | 1.26     |
| 6           |             | 1.0      | 0.0      | -1.0     | 8.78     | 1.36     |
| 7           |             | -1.0     | 0.0      | 1.0      | 4.24     | 1.43     |
| 8           |             | 1.0      | 0.0      | 1.0      | 28.96    | 1.64     |
| 9           |             | 0.0      | -1.0     | -1.0     | 3.63     | 1.33     |
| 10          |             | 0.0      | 1.0      | -1.0     | 2.9      | 1.23     |
| 11          |             | 0.0      | -1.0     | 1.0      | 9.92     | 1.72     |
| 12          |             | 0.0      | 1.0      | 1.0      | 10.53    | 1.61     |
| 13          |             | 0.0      | 0.0      | 0.0      | 7.34     | 1.47     |
| 14          |             | 0.0      | 0.0      | 0.0      | 7.08     | 1.46     |
| 15          |             | 0.0      | 0.0      | 0.0      | 7.86     | 1.51     |

## Step 5: Regression

The goal here is to produce a regression equation that includes main effects, two-factor interactions, and quadratic effects for  $k_3$ :

$$Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_{12}X_1X_2 + b_{13}X_1X_3 + b_{23}X_2X_3 + b_{11}X_1^2 + b_{22}X_2^2 + b_{33}X_3^2$$

Create a new tab named “Regression –  $k_3$  - BBD” and import the results from the spreadsheet “Normalized data - BBD”. Afterwards, fit a generalized linear model to the data: [Analytics → Regression → Statistical fitting → Generalized Linear Models](#)

Generalized Linear Models Regression

Type: Linear

Confidence Level...: 95

Scale Parameter Method: Fixed value

Dependent Variable: Col5 - k3

Value: 1.0

Excluded Columns: Col6 - a2

Factors:

Covariates: Col2 - X1, Col3 - X2, Col4 - X3

Custom

Include All Main Effects

Full Factorial

X1+X2+X3+X1:X1+X2:X3:X3+X1:X2+X2:X3+X1:X3

Execute Cancel

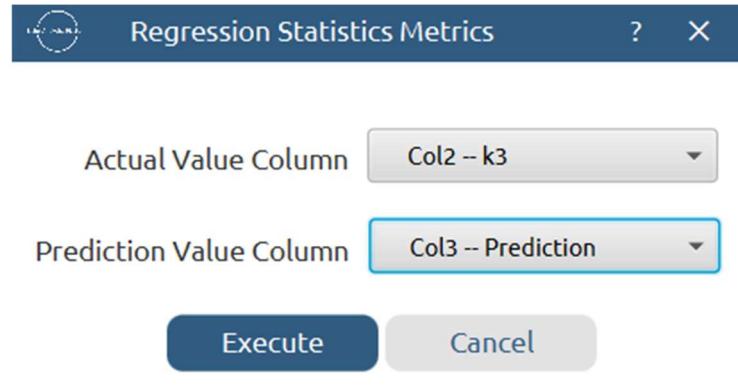
Results:

| k3    | Prediction |
|-------|------------|
| 3.53  | 3.6900000  |
| 23.65 | 22.6400000 |
| 3.47  | 4.4800000  |
| 20.19 | 20.0300000 |
| 1.34  | 1.9000000  |
|       |            |
| 8.78  | 10.5100000 |
| 4.24  | 2.5100000  |
|       |            |
| 28.96 | 28.4000000 |
|       |            |
| 3.63  | 2.9100000  |
|       |            |
| 2.9   | 1.3300000  |
|       |            |
| 9.92  | 11.4900000 |
| 10.53 | 11.2500000 |
| 7.34  | 7.4266667  |
| 7.08  | 7.4266667  |
| 7.86  | 7.4266667  |

|                                      |             |
|--------------------------------------|-------------|
| Goodness of Fit                      |             |
|                                      | Value       |
| Deviance                             | 14.9864667  |
| Scaled Deviance                      | 14.9864667  |
| Pearson Chi-Square                   | 14.9864667  |
| Scaled Pearson Chi-Square            | 14.9864667  |
| Log Likelihood                       | -21.2773113 |
| Akaike's Information Criterion (AIC) | 62.5546227  |
| Finite Sample Corrected AIC (AICC)   | 117.5546227 |
| Bayesian Information Criterion (BIC) | 69.6351247  |
| Consistent AIC (CAIC)                | 79.6351247  |

| Parameter Estimates |             |            |            |            |                |    |           |
|---------------------|-------------|------------|------------|------------|----------------|----|-----------|
| Variable            | Coefficient | Std. Error | Lower CI   | Upper CI   | Test Statistic | df | p-value   |
| intercept           | 7.4266667   | 0.5773503  | 6.2950809  | 8.5582524  | 165.4661333    | 1  | 0.0       |
| X1                  | 8.6250000   | 0.3535534  | 7.9320481  | 9.3179519  | 595.1250000    | 1  | 0.0       |
| X2                  | -0.4550000  | 0.3535534  | -1.1479519 | 0.2379519  | 1.6562000      | 1  | 0.1981172 |
| X3                  | 4.625       | 0.3535534  | 3.9320481  | 5.3179519  | 171.1250000    | 1  | 0.0       |
| X1*X3               | 4.32        | 0.5        | 3.3400180  | 5.2999820  | 74.6496        | 1  | 0.0       |
| X1*X2               | -0.8500000  | 0.5        | -1.8299820 | 0.1299820  | 2.8900000      | 1  | 0.0891309 |
| X2*X3               | 0.3350000   | 0.5        | -0.6449820 | 1.3149820  | 0.4489000      | 1  | 0.5028578 |
| X1*X1               | 4.6841667   | 0.5204165  | 3.6641691  | 5.7041643  | 81.0144641     | 1  | 0.0       |
| X2*X2               | 0.5991667   | 0.5204165  | -0.4208309 | 1.6191643  | 1.3255410      | 1  | 0.2496000 |
| X3*X3               | -1.2808333  | 0.5204165  | -2.3008309 | -0.2608357 | 6.0573564      | 1  | 0.0138485 |

Repeat this step for the second response variable. Results,  $a_2$ :


| a2   | Prediction |
|------|------------|
| 1.5  | 1.4875000  |
| 1.65 | 1.6475000  |
| 1.38 | 1.3825000  |
| 1.5  | 1.5125000  |
| 1.26 | 1.2250000  |
| 1.36 | 1.315      |
| 1.43 | 1.4750000  |
| 1.64 | 1.6750000  |
| 1.33 | 1.3775000  |
| 1.23 | 1.2625000  |
| 1.72 | 1.6875000  |
| 1.61 | 1.5625000  |
| 1.47 | 1.4800000  |
| 1.46 | 1.4800000  |
| 1.51 | 1.4800000  |

|                                      |             |
|--------------------------------------|-------------|
| Goodness of Fit                      |             |
| Value                                |             |
| Deviance                             | 0.0148500   |
| Scaled Deviance                      | 0.0148500   |
| Pearson Chi-Square                   | 0.0148500   |
| Scaled Pearson Chi-Square            | 0.0148500   |
| Log Likelihood                       | -13.7915030 |
| Akaike's Information Criterion (AIC) | 47.5830060  |
| Finite Sample Corrected AIC (AICC)   | 102.5830060 |
| Bayesian Information Criterion (BIC) | 54.6635080  |
| Consistent AIC (CAIC)                | 64.6635080  |

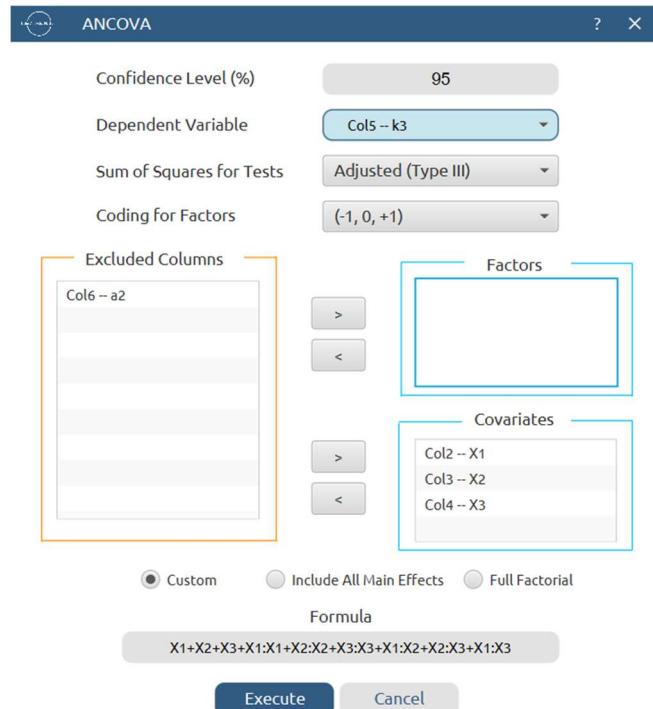
| Parameter Estimates |             |            |            |           |                |    |           |
|---------------------|-------------|------------|------------|-----------|----------------|----|-----------|
| Variable            | Coefficient | Std. Error | Lower CI   | Upper CI  | Test Statistic | df | p-value   |
| intercept           | 1.4800000   | 0.5773503  | 0.3484143  | 2.6115857 | 6.5712000      | 1  | 0.0103642 |
| X1                  | 0.0725000   | 0.3535534  | -0.6204519 | 0.7654519 | 0.0420500      | 1  | 0.8375245 |
| X2                  | -0.0600000  | 0.3535534  | -0.7529519 | 0.6329519 | 0.0288000      | 1  | 0.8652416 |
| X3                  | 0.1525000   | 0.3535534  | -0.5404519 | 0.8454519 | 0.1860500      | 1  | 0.6662247 |
| X1*X3               | 0.0275000   | 0.5        | -0.9524820 | 1.0074820 | 0.0030250      | 1  | 0.9561385 |
| X1*X2               | -0.0075000  | 0.5        | -0.9874820 | 0.9724820 | 0.0002250      | 1  | 0.9880322 |
| X2*X3               | -0.0025000  | 0.5        | -0.9824820 | 0.9774820 | 0.0000250      | 1  | 0.9960106 |
| X1*X1               | -0.0112500  | 0.5204165  | -1.0312476 | 1.0087476 | 0.0004673      | 1  | 0.9827532 |
| X2*X2               | 0.0387500   | 0.5204165  | -0.9812476 | 1.0587476 | 0.0055442      | 1  | 0.9406447 |
| X3*X3               | -0.0462500  | 0.5204165  | -1.0662476 | 0.9737476 | 0.0078981      | 1  | 0.9291843 |

## Step 6: Regression Metrics

Create a tab named “Metrics –  $k_3$  - BBD” and import the results from the spreadsheet “Regression –  $k_3$  - BBD”. Then, produce the regression metrics for the  $k_3$  regression equation: [Statistics → Model Metrics → Regression Metrics](#)



Results:


|             | Col1        | Col2 (D)           | Col3 (D)                | Col4 (D)            | Col5 (D)  |
|-------------|-------------|--------------------|-------------------------|---------------------|-----------|
| User Header | User Row ID | Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | R Squared |
| 1           |             | 0.9990978          | 0.9995488               | 0.8244444           | 0.9842641 |

Repeat this step for the second response variable. Results,  $a_2$ :

|             | Col1        | Col2 (D)           | Col3 (D)                | Col4 (D)            | Col5 (D)  |
|-------------|-------------|--------------------|-------------------------|---------------------|-----------|
| User Header | User Row ID | Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | R Squared |
| 1           |             | 0.0009900          | 0.0314643               | 0.0273333           | 0.9487931 |

## Step 7: Analysis of Covariance

Create a new tab named “ANCOVA – k3 - BBD” and import the results from the spreadsheet “Normalized data - BBD”. Afterwards perform analysis of covariance for k<sub>3</sub>: Statistics → Analysis of (Co)Variance → ANCOVA



Results:

|             | Col1        | Col2 (S) | Col3 (I) | Col4 (D)    | Col5 (D)    | Col6 (D)    | Col7 (D)  |
|-------------|-------------|----------|----------|-------------|-------------|-------------|-----------|
| User Header | User Row ID | Source   | DF       | Adj SS      | Adj MS      | F-Value     | P-Value   |
| 1           |             | X1       | 1        | 595.1250000 | 595.1250000 | 198.5541400 | 0.0000324 |
| 2           |             | X2       | 1        | 1.6562000   | 1.6562000   | 0.5525652   | 0.4907024 |
| 3           |             | X3       | 1        | 171.1250000 | 171.1250000 | 57.0931774  | 0.0006436 |
| 4           |             | X1*X1    | 1        | 81.0144641  | 81.0144641  | 27.0292077  | 0.0034700 |
| 5           |             | X2*X2    | 1        | 1.3255410   | 1.3255410   | 0.4422460   | 0.5354806 |
| 6           |             | X3*X3    | 1        | 6.0573564   | 6.0573564   | 2.0209421   | 0.2144031 |
| 7           |             | X1*X2    | 1        | 2.8900000   | 2.8900000   | 0.9642033   | 0.3712248 |
| 8           |             | X2*X3    | 1        | 0.4489000   | 0.4489000   | 0.1497685   | 0.7146804 |
| 9           |             | X1*X3    | 1        | 74.6496000  | 74.6496000  | 24.9056704  | 0.0041381 |
| 10          |             | Error    | 5        | 14.9864667  | 2.9972933   |             |           |
| 11          |             | Total    | 14       | 952.3729733 |             |             |           |

Repeat this step for the second response variable. Results, a<sub>2</sub>:

|             | Col1        | Col2 (S) | Col3 (I) | Col4 (D)  | Col5 (D)  | Col6 (D)   | Col7 (D)  |
|-------------|-------------|----------|----------|-----------|-----------|------------|-----------|
| User Header | User Row ID | Source   | DF       | Adj SS    | Adj MS    | F-Value    | P-Value   |
| 1           |             | X1       | 1        | 0.0420500 | 0.0420500 | 14.1582492 | 0.0131204 |
| 2           |             | X2       | 1        | 0.0288000 | 0.0288000 | 9.6969697  | 0.0264310 |
| 3           |             | X3       | 1        | 0.1860500 | 0.1860500 | 62.6430976 | 0.0005183 |
| 4           |             | X1*X1    | 1        | 0.0004673 | 0.0004673 | 0.1573427  | 0.7079790 |
| 5           |             | X2*X2    | 1        | 0.0055442 | 0.0055442 | 1.8667444  | 0.2300879 |
| 6           |             | X3*X3    | 1        | 0.0078981 | 0.0078981 | 2.6592852  | 0.1638757 |
| 7           |             | X1*X2    | 1        | 0.0002250 | 0.0002250 | 0.0757576  | 0.7941430 |
| 8           |             | X2*X3    | 1        | 0.0000250 | 0.0000250 | 0.0084175  | 0.9304615 |
| 9           |             | X1*X3    | 1        | 0.0030250 | 0.0030250 | 1.0185185  | 0.3591866 |
| 10          |             | Error    | 5        | 0.0148500 | 0.0029700 |            |           |
| 11          |             | Total    | 14       | 0.2900000 |           |            |           |

## Robustness testing stage

### Step 8: Fractional Factorial Design

Create a new tab named “Fractional Factorial” and define the factors of this stage in the column headers. Afterwards, fill each column with the low and high levels of the corresponding factors and apply the fractional factorial method: DOE → Screening → Fractional Factorial

|             | Col1        | Col2 (I) | Col3 (I) | Col4 (D) | Col5 (D) | Col6 (I) |
|-------------|-------------|----------|----------|----------|----------|----------|
| User Header | User Row ID | A        | B        | C        | D        | E        |
| 1           |             | 90       | 45       | 5.1      | 0.9      | 25       |
| 2           |             | 91       | 55       | 5.5      | 1.1      | 35       |

DoE Fractional Factorial

Number of Center Points per Block: 3

Number of Replicates: 1

Number of Blocks: 1

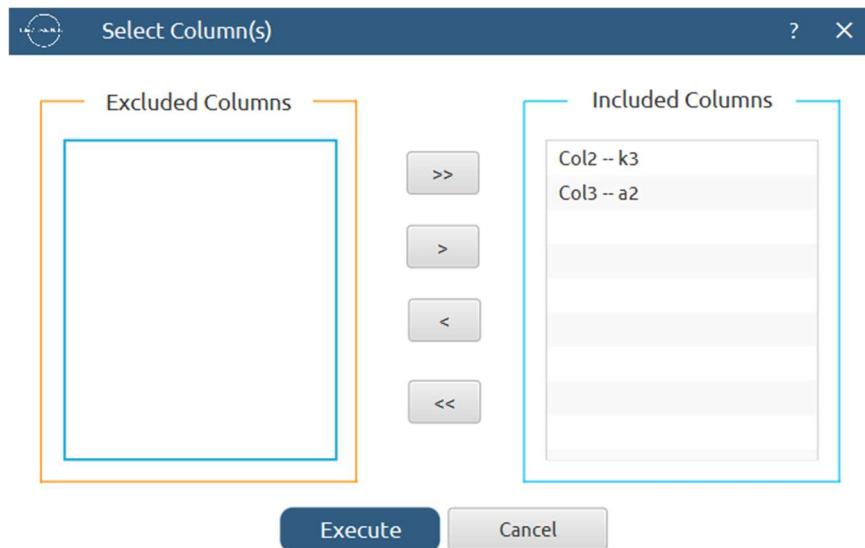
Random Standard order

Fraction Relationship: a b c ab ac

**Excluded Columns**

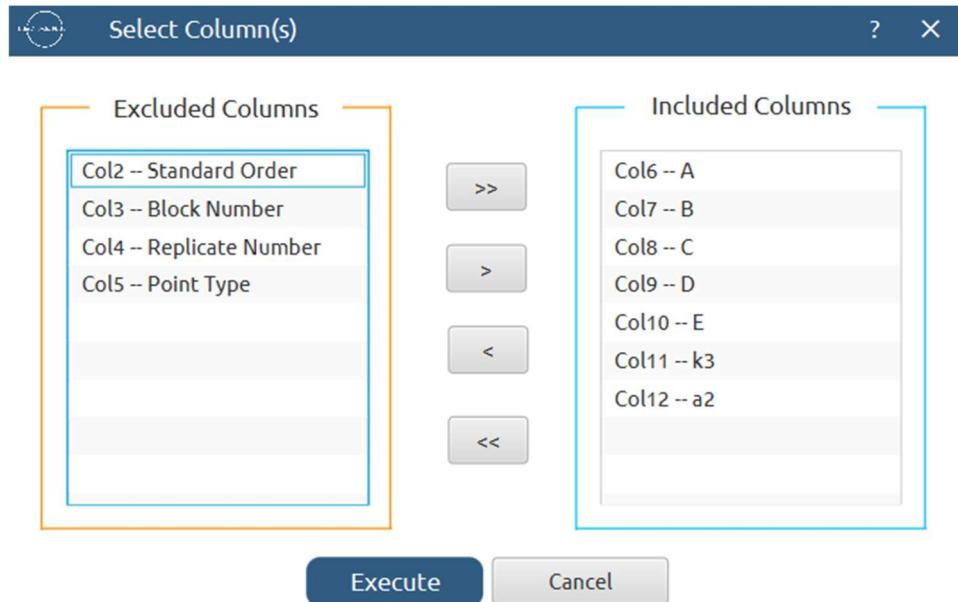
**Included Columns**

- Col2 -- A
- Col3 -- B
- Col4 -- C
- Col5 -- D
- Col6 -- E


### Results:

|             | Col1        | Col2 (I)       | Col3 (S)     | Col4 (S)         | Col5 (S)     | Col6 (D) | Col7 (D) | Col8 (D) | Col9 (D) | Col10 (D) |
|-------------|-------------|----------------|--------------|------------------|--------------|----------|----------|----------|----------|-----------|
| User Header | User Row ID | Standard Order | Block Number | Replicate Number | Point Type   | A        | B        | C        | D        | E         |
| 1           |             | 1              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 45.0     | 5.1      | 1.1      | 35.0      |
| 2           |             | 2              | Block: 1     | Replicate: 1     | Design Point | 91.0     | 45.0     | 5.1      | 0.9      | 25.0      |
| 3           |             | 3              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 55.0     | 5.1      | 0.9      | 35.0      |
| 4           |             | 4              | Block: 1     | Replicate: 1     | Design Point | 91.0     | 55.0     | 5.1      | 1.1      | 25.0      |
| 5           |             | 5              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 45.0     | 5.5      | 1.1      | 25.0      |
| 6           |             | 6              | Block: 1     | Replicate: 1     | Design Point | 91.0     | 45.0     | 5.5      | 0.9      | 35.0      |
| 7           |             | 7              | Block: 1     | Replicate: 1     | Design Point | 90.0     | 55.0     | 5.5      | 0.9      | 25.0      |
| 8           |             | 8              | Block: 1     | Replicate: 1     | Design Point | 91.0     | 55.0     | 5.5      | 1.1      | 35.0      |
| 9           |             | 9              | Block: 1     | ----             | Center Point | 90.5     | 50.0     | 5.3      | 1.0      | 30.0      |
| 10          |             | 10             | Block: 1     | ----             | Center Point | 90.5     | 50.0     | 5.3      | 1.0      | 30.0      |
| 11          |             | 11             | Block: 1     | ----             | Center Point | 90.5     | 50.0     | 5.3      | 1.0      | 30.0      |

## Step 9: Definition of response variables

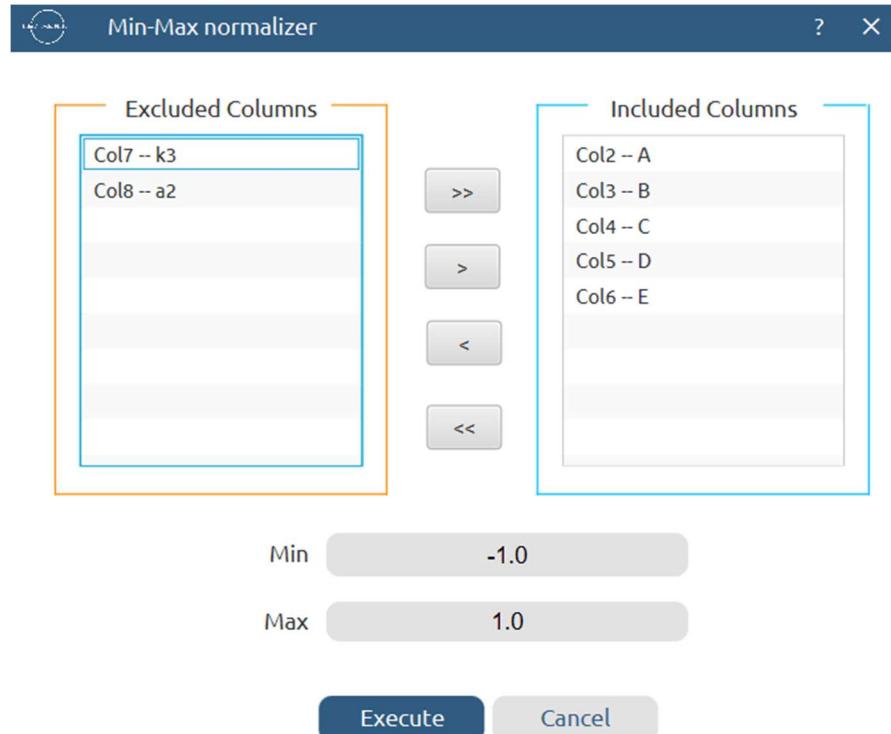

Create a new tab named “Responses - FF” and define the responses in the column headers. Fill each column with the values of the corresponding responses that were observed and make sure the values follow the order of the experiments as given by the fractional factorial method. Then, select all columns to be transferred to the right spreadsheet: [Data Transformation](#) → [Data Manipulation](#) → [Select Column\(s\)](#)

|             | Col1        | Col2 (D) | Col3 (D) |
|-------------|-------------|----------|----------|
| User Header | User Row ID | k3       | a2       |
| 1           |             | 3.32     | 1.55     |
| 2           |             | 6.18     | 1.51     |
| 3           |             | 4.4      | 1.49     |
| 4           |             | 4.97     | 1.54     |
| 5           |             | 3.6      | 1.53     |
| 6           |             | 5.73     | 1.55     |
| 7           |             | 4.5      | 1.47     |
| 8           |             | 5.17     | 1.59     |
| 9           |             | 4.52     | 1.49     |
| 10          |             | 4.6      | 1.49     |
| 11          |             | 4.29     | 1.5      |



## Step 10: Data isolation

Create a new tab named “Data - FF” and import the results from the “Fractional Factorial” and “Responses - FF” spreadsheets by right clicking on the left spreadsheet. Then, select only the factors and responses columns to be transferred to the right spreadsheet: [Data Transformation](#) → [Data Manipulation](#) → [Select Column\(s\)](#)




Results:

|             | Col1        | Col2 (D) | Col3 (D) | Col4 (D) | Col5 (D) | Col6 (D) | Col7 (D) | Col8 (D) |
|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|
| User Header | User Row ID | A        | B        | C        | D        | E        | k3       | a2       |
| 1           |             | 90.0     | 45.0     | 5.1      | 1.1      | 35.0     | 3.32     | 1.55     |
| 2           |             | 91.0     | 45.0     | 5.1      | 0.9      | 25.0     | 6.18     | 1.51     |
| 3           |             | 90.0     | 55.0     | 5.1      | 0.9      | 35.0     | 4.4      | 1.49     |
| 4           |             | 91.0     | 55.0     | 5.1      | 1.1      | 25.0     | 4.97     | 1.54     |
| 5           |             | 90.0     | 45.0     | 5.5      | 1.1      | 25.0     | 3.6      | 1.53     |
| 6           |             | 91.0     | 45.0     | 5.5      | 0.9      | 35.0     | 5.73     | 1.55     |
| 7           |             | 90.0     | 55.0     | 5.5      | 0.9      | 25.0     | 4.5      | 1.47     |
| 8           |             | 91.0     | 55.0     | 5.5      | 1.1      | 35.0     | 5.17     | 1.59     |
| 9           |             | 90.5     | 50.0     | 5.3      | 1.0      | 30.0     | 4.52     | 1.49     |
| 10          |             | 90.5     | 50.0     | 5.3      | 1.0      | 30.0     | 4.6      | 1.49     |
| 11          |             | 90.5     | 50.0     | 5.3      | 1.0      | 30.0     | 4.29     | 1.5      |

## Step 11: Normalization

Create a new tab named “Normalized data - FF” and import the results from the “Data - FF” spreadsheet. Afterwards, normalize the factor columns to take values in the range [-1, 1]: [Data Transformation → Normalizers → Min-Max](#)



Results:

|             |             | Col1 | Col2 (D) | Col3 (D) | Col4 (D) | Col5 (D) | Col6 (D) | Col7 (D) | Col8 (D) |
|-------------|-------------|------|----------|----------|----------|----------|----------|----------|----------|
| User Header | User Row ID | A    | B        | C        | D        | E        | k3       | a2       |          |
| 1           |             | -1.0 | -1.0     | -1.0     | 1.0      | 1.0      | 3.32     | 1.55     |          |
| 2           |             | 1.0  | -1.0     | -1.0     | -1.0     | -1.0     | 6.18     | 1.51     |          |
| 3           |             | -1.0 | 1.0      | -1.0     | -1.0     | 1.0      | 4.4      | 1.49     |          |
| 4           |             | 1.0  | 1.0      | -1.0     | 1.0      | -1.0     | 4.97     | 1.54     |          |
| 5           |             | -1.0 | -1.0     | 1.0      | 1.0      | -1.0     | 3.6      | 1.53     |          |
| 6           |             | 1.0  | -1.0     | 1.0      | -1.0     | 1.0      | 5.73     | 1.55     |          |
| 7           |             | -1.0 | 1.0      | 1.0      | -1.0     | -1.0     | 4.5      | 1.47     |          |
| 8           |             | 1.0  | 1.0      | 1.0      | 1.0      | 1.0      | 5.17     | 1.59     |          |
| 9           |             | 0.0  | 0.0      | 0.0      | 0E-7     | 0.0      | 4.52     | 1.49     |          |
| 10          |             | 0.0  | 0.0      | 0.0      | 0E-7     | 0.0      | 4.6      | 1.49     |          |
| 11          |             | 0.0  | 0.0      | 0.0      | 0E-7     | 0.0      | 4.29     | 1.5      |          |

## Step 12: Regression

The goal here is to produce a regression equation that includes main effects for  $k_3$ :

$$Y = b_0 + b_1A + b_2B + b_3C + b_4D + b_5E$$

Create a new tab named “Regression –  $k_3$  - FF” and import the results from the spreadsheet “Normalized data - FF”. Afterwards, fit a generalized linear model to the data: [Analytics](#) → [Regression](#) → [Statistical fitting](#) → [Generalized Linear Models](#)

Generalized Linear Models Regression

Type: Linear

Confidence Level...: 95

Scale Parameter Method: Fixed value

Dependent Variable: Col7 -- k3

Value: 1.0

Excluded Columns: Col8 -- a2

Factors:

Covariates: Col2 -- A, Col3 -- B, Col4 -- C, Col5 -- D

Custom (radio button selected)

Include All Main Effects

Full Factorial

Formula: A+B+C+D+E

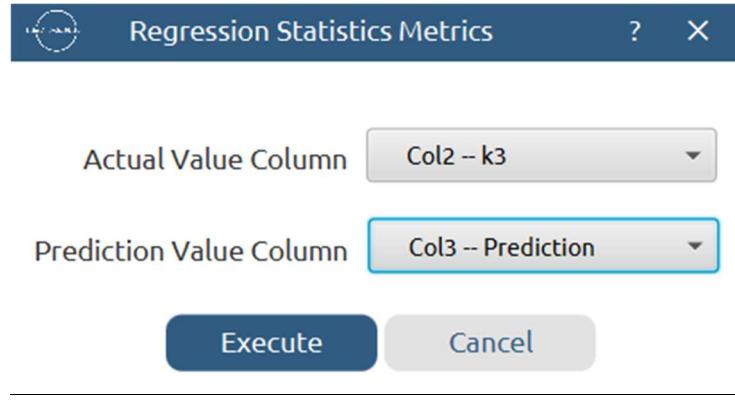
Execute Cancel

Results:

| k3   | Prediction |                                      |             |
|------|------------|--------------------------------------|-------------|
| 3.32 | 3.2930682  | Goodness of Fit                      |             |
| 6.18 | 5.9455682  | Value                                |             |
| 4.4  | 4.2830682  | Deviance                             | 0.3173011   |
| 4.97 | 5.0605682  | Scaled Deviance                      | 0.3173011   |
| 3.6  | 3.4830682  | Pearson Chi-Square                   | 0.3173011   |
| 5.73 | 5.8205682  | Scaled Pearson Chi-Square            | 0.3173011   |
| 4.5  | 4.4730682  | Log Likelihood                       | -10.2669744 |
| 5.17 | 4.9355682  | Akaike's Information Criterion (AIC) | 32.5339489  |
| 4.52 | 4.6618182  | Finite Sample Corrected AIC (AICC)   | 53.5339489  |
| 4.6  | 4.6618182  | Bayesian Information Criterion (BIC) | 34.9213205  |
| 4.29 | 4.6618182  | Consistent AIC (CAIC)                | 40.9213205  |

| Parameter Estimates |             |            |            |           |                |    |           |
|---------------------|-------------|------------|------------|-----------|----------------|----|-----------|
| Variable            | Coefficient | Std. Error | Lower CI   | Upper CI  | Test Statistic | df | p-value   |
| intercept           | 4.6618182   | 0.3015113  | 4.0708668  | 5.2527696 | 239.0580364    | 1  | 0.0       |
| A                   | 0.7787500   | 0.3535534  | 0.0857981  | 1.4717019 | 4.8516125      | 1  | 0.0276203 |
| B                   | 0.0262500   | 0.3535534  | -0.6667019 | 0.7192019 | 0.0055125      | 1  | 0.9408145 |
| C                   | 0.0162500   | 0.3535534  | -0.6767019 | 0.7092019 | 0.0021125      | 1  | 0.9633406 |
| D                   | -0.4687500  | 0.3535534  | -1.1617019 | 0.2242019 | 1.7578125      | 1  | 0.1848976 |
| E                   | -0.0787500  | 0.3535534  | -0.7717019 | 0.6142019 | 0.0496125      | 1  | 0.8237389 |

Repeat this step for the second response variable. Results, a<sub>2</sub>:


| a2   | Prediction |
|------|------------|
| 1.55 | 1.5403409  |
| 1.51 | 1.4978409  |
| 1.49 | 1.4803409  |
| 1.54 | 1.5328409  |
| 1.53 | 1.5203409  |
|      |            |
| 1.55 | 1.5428409  |
| 1.47 | 1.4603409  |
| 1.59 | 1.5778409  |
| 1.49 | 1.5190909  |
| 1.49 | 1.5190909  |
| 1.5  | 1.5190909  |

|                                      |             |
|--------------------------------------|-------------|
| Goodness of Fit                      |             |
|                                      | Value       |
| Deviance                             | 0.0028284   |
| Scaled Deviance                      | 0.0028284   |
| Pearson Chi-Square                   | 0.0028284   |
| Scaled Pearson Chi-Square            | 0.0028284   |
| Log Likelihood                       | -10.1097381 |
| Akaike's Information Criterion (AIC) | 32.2194761  |
| Finite Sample Corrected AIC (AICC)   | 53.2194761  |
| Bayesian Information Criterion (BIC) | 34.6068478  |
| Consistent AIC (CAIC)                | 40.6068478  |

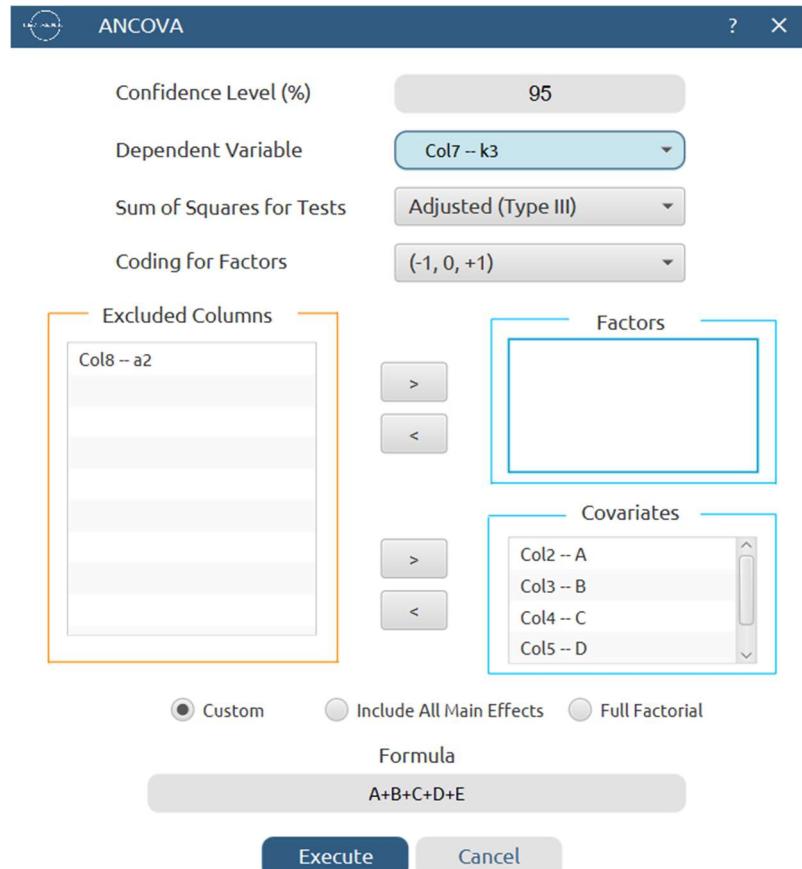
| Parameter Estimates |             |            |            |           |                |    |           |
|---------------------|-------------|------------|------------|-----------|----------------|----|-----------|
| Variable            | Coefficient | Std. Error | Lower CI   | Upper CI  | Test Statistic | df | p-value   |
| intercept           | 1.5190909   | 0.3015113  | 0.9281395  | 2.1100423 | 25.3840091     | 1  | 5E-7      |
| A                   | 0.0187500   | 0.3535534  | -0.6742019 | 0.7117019 | 0.0028125      | 1  | 0.9577056 |
| B                   | -0.0062500  | 0.3535534  | -0.6992019 | 0.6867019 | 0.0003125      | 1  | 0.9858960 |
| C                   | 0.0062500   | 0.3535534  | -0.6867019 | 0.6992019 | 0.0003125      | 1  | 0.9858960 |
| D                   | 0.0237500   | 0.3535534  | -0.6692019 | 0.7167019 | 0.0045125      | 1  | 0.9464423 |
| E                   | 0.0162500   | 0.3535534  | -0.6767019 | 0.7092019 | 0.0021125      | 1  | 0.9633406 |

## Step 13: Regression Metrics

Create a tab named “Metrics –  $k_3$  - FF” and import the results from the spreadsheet “Regression –  $k_3$  - FF”. Then, produce the regression metrics for the  $k_3$  regression equation: Statistics → Model Metrics → Regression Metrics



Results:


|             | Col1        | Col2 (D)           | Col3 (D)                | Col4 (D)            | Col5 (D)  |
|-------------|-------------|--------------------|-------------------------|---------------------|-----------|
| User Header | User Row ID | Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | R Squared |
| 1           |             | 0.0288456          | 0.1698398               | 0.1375620           | 0.9545672 |

Repeat this step for the second response variable. Results,  $a_2$ :

|             | Col1        | Col2 (D)           | Col3 (D)                | Col4 (D)            | Col5 (D)  |
|-------------|-------------|--------------------|-------------------------|---------------------|-----------|
| User Header | User Row ID | Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | R Squared |
| 1           |             | 0.0002571          | 0.0160352               | 0.0140496           | 0.7805889 |

## Step 14: Analysis of Covariance

Create a new tab named “ANCOVA – k3 - FF” and import the results from the spreadsheet “Normalized data - FF”. Afterwards perform analysis of covariance for  $k_3$ : Statistics → Analysis of (Co)Variance → ANCOVA



Results:

|             | Col1        | Col2 (S) | Col3 (I) | Col4 (D)  | Col5 (D)  | Col6 (D)   | Col7 (D)  |
|-------------|-------------|----------|----------|-----------|-----------|------------|-----------|
| User Header | User Row ID | Source   | DF       | Adj SS    | Adj MS    | F-Value    | P-Value   |
| 1           |             | A        | 1        | 4.8516125 | 4.8516125 | 76.4512311 | 0.0003242 |
| 2           |             | B        | 1        | 0.0055125 | 0.0055125 | 0.0868654  | 0.7800455 |
| 3           |             | C        | 1        | 0.0021125 | 0.0021125 | 0.0332886  | 0.8623953 |
| 4           |             | D        | 1        | 1.7578125 | 1.7578125 | 27.6994359 | 0.0032906 |
| 5           |             | E        | 1        | 0.0496125 | 0.0496125 | 0.7817889  | 0.4170786 |
| 6           |             | Error    | 5        | 0.3173011 | 0.0634602 |            |           |
| 7           |             | Total    | 10       | 6.9839636 |           |            |           |

Repeat this step for the second response variable. Results, a<sub>2</sub>:

|             | Col1        | Col2 (S) | Col3 (I) | Col4 (D)  | Col5 (D)  | Col6 (D)  | Col7 (D)  |
|-------------|-------------|----------|----------|-----------|-----------|-----------|-----------|
| User Header | User Row ID | Source   | DF       | Adj SS    | Adj MS    | F-Value   | P-Value   |
| 1           |             | A        | 1        | 0.0028125 | 0.0028125 | 4.9718763 | 0.0761870 |
| 2           |             | B        | 1        | 0.0003125 | 0.0003125 | 0.5524307 | 0.4907525 |
| 3           |             | C        | 1        | 0.0003125 | 0.0003125 | 0.5524307 | 0.4907525 |
| 4           |             | D        | 1        | 0.0045125 | 0.0045125 | 7.9770992 | 0.0369181 |
| 5           |             | E        | 1        | 0.0021125 | 0.0021125 | 3.7344315 | 0.1111383 |
| 6           |             | Error    | 5        | 0.0028284 | 0.0005657 |           |           |
| 7           |             | Total    | 10       | 0.0128909 |           |           |           |

## References

(1) Terzić, J.; Popović, I.; Stajić, A.; Tumpa, A.; Jančić-Stojanović, B. Application of Analytical Quality by Design Concept for Bilastine and Its Degradation Impurities Determination by Hydrophilic Interaction Liquid Chromatographic Method. *Journal of Pharmaceutical and Biomedical Analysis* 2016, 125, 385–393. <https://doi.org/10.1016/j.jpba.2016.04.022>.